Baseband IC Design Kits for Rapid System Realization

Lanbing Chen
Cadence Design Systems
Engineering Director

John Rowland
Spreadtrum Communications
SVP of Hardware Engineering
Agenda

How to Speed Up IC Volume Production

Lanbing Chen
Cadence Design Systems
Engineering Director

Baseband IC Design Kits for Rapid System Realization

John Rowland
Spreadtrum Communications
SVP of Hardware Engineering
Life of Electronic Device Getting Shorter

<table>
<thead>
<tr>
<th>Days since last release</th>
<th>Average</th>
<th>Sep 2015</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>379</td>
</tr>
<tr>
<td>Recent releases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 2014</td>
<td></td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>Sep 2013</td>
<td></td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>Sep 2012</td>
<td></td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>Oct 2011</td>
<td></td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>Jun 2010</td>
<td></td>
<td>467</td>
<td></td>
</tr>
<tr>
<td>Jun 2009</td>
<td></td>
<td>370</td>
<td></td>
</tr>
</tbody>
</table>

Competition - Market Share

- **Jan 2016**
- **Sep 2015**
- **Apr 2015**
- **Jul 2016**
Cadence System Design Enablement
From end product to chip

Partnerships with Ecosystem Leaders

CHIP (Core EDA)
- Design and implementation
- IP/SoC verification
- On-chip protocol IP
- Dataplane unit IP
- Software drivers

PACKAGE and BOARD
- PCB design
- Package design
- PCB and package analysis
- Chip-to-chip protocol IP

SYSTEM INTEGRATION
- System analysis
- Hardware-Software verification
- System-level IP protocols
- Software applications
- Software development

Cadence Design IP and Tensilica IP
- Incisive, JasperGold, Verification IP
- Allegro® package and PCB design, OrCad® PCB design
- Virtuoso® analog, custom, RF, mixed-signal design platform

- Palladium / VSP, Protium Stratus

Mobile, Consumer, Cloud, Datacenter, Auto, Medical, IoT
Roadmap to Best-in-Class Product Creation

Attributes and practices from a survey of 500+ leading systems companies

- Allegro advanced fabrication support (HDI, embedded, rigid / flex etc.)
- ECAD / MCAD
- Component selection across multiple databases
- Thermally aware signal and power integrity
- Centralized component library

Allegro PCB with all major MCAD tools

Allegro PCB

Allegro Design Workbench

Allegro Library Workbench

Sigrity

© 2015 Cadence Design Systems, Inc. All rights reserved.
Allegro Sigrity Integrated Solution
Better together – makes product creation predictable

Allegro® constraint-driven PCB design flow endorsed by customers since 2001

- Predictable design cycles
- Accelerate time-to-volume production
 - Eliminate unnecessary design iterations
 - Route and tune standards-based interfaces 4X faster
- Early prototyping with Sigrity™ technology from Allegro platform creates robust reusable PCB constraint IP

Sigrity tool’s unique power-aware SI/PI analysis and signoff ensures designs work right the first time

- Accelerate time-to-volume production
 - Validate multi-gigabit interfaces are compliant
 - Eliminate prototype iterations
- Reduce end-product cost by optimizing decoupling capacitors
- Integrated with Allegro PCB and IC packaging design solutions
Shorter, Predictable Design Cycles with Allegro Constraint-Driven Design Flow

Traditional PCB and EDA design flow supports a subset of constraints

Allegro constraint-driven PCB design flow

Up to 30%

Significant reduction in design cycles reported by customers

Major boost in PCB design productivity

Unmatched breadth and depth of constraints to tackle any design
Duplicated Effort for IC and System Design in Current Design Flow

IC Company
- New silicon development
- Accurate Silicon Models
- SPICE to IBIS conversion
- Board Level Simulation
- Reference Board Layout
- Constraints
- Topologies

PCB Layout Guidelines

Enter Constraints
Recreate Topologies

Board Level Simulation

Board Layout
High Efficient Design Flow Driven by Cadence Methodology

• Shorten your customers time to implement new devices / architectures on PCB systems

• Provide design kits in *electronic plug-n-play form* enabling customers to *design-in* new devices/architectures in shortest amount of time possible
Agenda

How to Speed Up IC Volume Production

Lanbing Chen
Cadence Design Systems
Engineering Director

Baseband IC Design Kits for Rapid System Realization

John Rowland
Spreadtrum Communications
SVP of Hardware Engineering
What's in a Design-in kit

- A design-in kit is a **Virtual Reference Design (VRD)**
 - All the stuff here:
 - Is modeled here:

Measurement results are replaced with simulation results

[Sigrity System SI](https://www.sigrity.com)
Design-in kit & Development Cycle

- Correlated IO Models & Large Package Models
- Coupled Topologies Defined ISI Stimulus Custom Measurements
- Component-Level Models Post-Processing Utilities

- Model Development & Verification
- Pre-Route Solution’s-Space Analysis
- Post Route Analysis Verification

- Topology Entry & Floorplanning
- Constraint Driven Layout
- Pre-Defined Rules (Layout, Topology, Electrical)
- Mock-Up PCB Component Footprints, Symbol

- Tutorial “How_To…” PC-Screen Movies

...valuable data for the whole flow!
Design-in kit Contents

- A collection of design and simulation plug-n-play modules, scripts and utilities for Cadence Allegro/Sigrity tools that shorten the time to design-in new IC devices/platforms
Board Level Reuse in Design-in kit
Signal & Power Integrity Simulation Reuse with Measurement Correlation Data

- Tested and verified in the lab and compared to Sigrity simulation
 - Results are correlated with test and measurement equipment
- It starts with silicon correlated I/O (IBIS) models
- Interconnect extracted with industry leading field solvers from Sigrity model signal, power, and ground coupled together.
DesignKit Helps Win-Win by Designing For Your Customer

- Make new devices/architectures easy to design-in
- Fast Time to Market
 - Larger market share
 - Higher revenues
 - Faster return on investment
- High quality design with proven data
- Differentiated and improved customer support makes for a preferred vendor

- Instant productivity
- Reliable & proven data
- Shorter design cycle

Faster To Market

Increased revenue opportunity
Cadence and Spreadtrum Collaborate on Virtual Reference Design Kit to Reduce Customers’ Design Cycle by Up to 12 Weeks

Design and Spreadtrum announced they have developed a virtual reference design kit specific to Spreadtrum’s SC9830A quad-core system-on-chip (SoC) platform requirements.

The availability of the kit enables joint customers to accelerate their mobile product and application design cycles by **up to 12 weeks**, including time spent on schematic design, PCB design and power-aware signal integrity (SI) and power integrity (PI) signoff simulation.

“We worked very closely with Cadence, leveraging their Sigriy technology, to develop a virtual reference design kit that makes it easier for our customers to design in our SC9830A quad-core SoC,” said John Rowland, SVP of Hardware Engineering at Spreadtrum. “Our customers can now begin to optimize the cost and performance of their products to take advantage of all the Spreadtrum SC9830A features, while meeting accelerated time-to-market challenges.”
Design-in kit Folder Structure

Contents

1. Design Kit Introduction ... 15
 1.1 Design kit Structure ... 13
 1.2 EDA Tools Requirement ... 14
 1.2.1 Schematic Tools ... 14
 1.2.2 PCB Layout Tools ... 14
 1.2.3 SI/PI Sign Off Tools Requirement 14
 1.3 Reference Design Structure .. 15

2. General Setting Introduction .. 16
 2.1 SI/PI Path Setting ... 16
 2.2 Schematic and PCB Path Setting 17
 2.3 PCB Materials Setting ... 17

3. LPDDR3 Design Guideline ... 19
 3.1 LPDDR3 Introduction .. 19
 3.2 LPDDR3 Module SCH Description 21
 3.3 LPDDR3 Electric Constrain Guidelines 22
 3.4 LPDDR3 Physical Constrain Guidelines 22
 3.5 LPDDR3 SI Verification ... 22
 3.5.1 S-parameter Extraction 23
 3.5.2 LPDDR3 1333 Package and PCB NetMapping 30
 3.5.3 LPDDR3 1333 Ideal Power Timing 40
 3.5.4 SSN ... 75
 3.6 Discussion .. 79

4. MIPI Design Guideline ... 79
 4.1 MIPI Introduction .. 80
 4.2 MIPI Module SCH Description 81
 4.3 MIPI Electric Constrain Guidelines 82
 4.4 MIPI Physical Constrain Guidelines 82
 4.5 MIPI SI/Verification .. 82
 4.5.1 PCB S-parameter .. 82
 4.5.2 MIPI Timing Simulation 99
 4.5.2.1 CSIO/CSIH Timing Simulation 99
 4.5.2.2 DSI Timing Simulation 108
 4.6 Discussion .. 112

5. USB2.0 Design Guideline .. 113
 5.1 USB2.0 Introduction .. 113
 5.2 USB2.0 Module SCH Description 113
 5.3 USB2.0 Electric Constrain Guidelines 114
 5.4 USB2.0 Physical Constrain Guidelines 114
 5.5 USB2.0 SI Verification ... 114
 5.5.1 S-parameter Extraction 114
 5.5.2 USB2.0 Timing ... 119
 5.6 Discussion .. 124

6. EMMC Design Guideline .. 125
 6.1 EMMC Introduction .. 125
 6.2 EMMC Module SCH Description 126
 6.3 EMMC Electric Constrain Guidelines 126
 6.4 EMMC Physical Constrain Guidelines 126
 6.5 EMMC SI/Verification ... 127
 6.5.1 S-parameter Extraction 127
 6.5.2 EMMC Timing .. 129
 6.6 Discussion .. 133

7. SDIO Design Guideline .. 134
 7.1 SDIO Introduction .. 134
 7.2 SDIO Module SCH Description 135
 7.3 SDIO Electric Constrain Guidelines 135
 7.4 SDIO Physical Constrain Guidelines 135
 7.5 SDIO SI/Verification ... 136
 7.5.1 S-parameter Extraction 136
 7.5.2 SDIO Timing .. 137
 7.6 Discussion .. 142

8. Power Delivery System Verification 143
 8.1 Power Delivery System ... 143
 8.2 Battery Voltage Domain Analysis 147
 8.2.1 DC IR-Drop .. 147
 8.2.2 AC Impedance ... 151
 8.3 CORE Power Domain System 154
 8.3.1 DC IR-Drop .. 155
 8.3.2 AC PDN Impedance .. 160
Thank You