Designing Out DFM Issues at 65nm

Sarah Lamont
27th June 2006
Introduction

- Overview of S3
- What is DFM?
- Why DFM is an issue now?
- How can we improve our designs for DFM?
- Conclusions
About S3

- **Consumer Electronics Design Company**
 - Home Entertainment
 - Mobile Multimedia
 - Healthcare

- **Integrated Circuits and Embedded Software Solutions**
 - Worldwide Client Base

- **Unique Combination of Software and IP**
 - Single-chip, Power-efficient Systems

- **Getting Clients to Market Faster**
 - Expertise, Innovation, Products, Process
S3 - Nanometer Leadership

- **Global Leader in Nanometer IC Design**
 - On schedule right first time silicon
 - Mixed Analog / Digital SoC Focus
 - Over 25 Designs in 90nm
 - Developing in 65nm since 2004

- **Serving Top Tier Clients**
 - Including Atmel, Philips, Micronas
 Texas Instruments, Toshiba

- **Teaming with Leading Technology Partners**
 - Including Cadence, IBM, Synopsys, TSMC
What is DFM?

- Yield quantifies successful silicon die throughput
- DfM / DfY tackles known yield issues by best design practice
- Yield implication for unit cost:

\[
$unit = \frac{\$wafer}{(#die) \times yield} + test_time \times ($tester)
\]

- Ultimately impacts the ROI for the IC vendor
- Trend getting worse for 65 / 45nm

- 90nm feature size created by 193nm lithography
 - “Like painting a thin line with a thick brush”

- Best design practice captured by working at leading edge technologies
Types of Yield Loss?

- **Random**
 - Particle Defects
 - Interconnect width

- **Systematic**
 - Feature Limited
 - Poly gate extension

- **Parametric**
 - Device Physics
 - Matching devices
Why is DFM an issue now at 65nm?

Drawn in Layout tool

Manufactured at older technology nodes

Manufactured at 65nm
How Can We Improve Our Designs For DFM?

- Design: Redundancy, testability, libraries, IP, etc.
- Layout: Robust layout: Library / re-usable IP, foundry yield analysis
- Review: Maturity consideration
- Manufacture
- Test: Failure mechanism analysis
DFM Aware Design Flow

- **Synthesis** (RTL Compiler)
- **Place & Route** (PKS, NanoRoute)
- **Floorplan** (SOC Encounter)
- **Routing** (Fire&Ice)
- **Physical Verification** (Third Party)
- **Formal Verification** (Conformal, Third Party)
- **Test Insertion** (DfT-Compiler)
- **Signal & Power Integrity** (CeltIC, VoltageStorm)
- **Chip-Finishing**
- **Chip Extraction** (Fire&Ice)
- **Physical Verification** (Third Party)
- **Floorplan** (SOC Encounter)
- **Synthesis** (RTL Compiler)

GDS 2
DFM Aware Power Grid

Non DFM aware

DFM aware
S3 Approach

- Even VDD / VSS grid
- Conditional spacing
- Wide track minimisation
Via Doubling

- **Risk**
 - High resistivity on single vias

- **Identify single vias on critical nets**
 - e.g. With respect to timing or matching

- **Doubling vias reduces faults**
 - 50% probability reduction

- **Post-route doubling**
 - Don’t compromise area
S3 Approach

Pre multi-cut via insertion:

<table>
<thead>
<tr>
<th>#</th>
<th>Metal 1</th>
<th>single-cut</th>
<th>multi-cut</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>734920</td>
<td>(99.9%)</td>
<td>432 (0.1%)</td>
<td>735352</td>
</tr>
<tr>
<td>6</td>
<td>778059</td>
<td>(99.9%)</td>
<td>551 (0.1%)</td>
<td>778610</td>
</tr>
<tr>
<td>7</td>
<td>440994</td>
<td>(99.9%)</td>
<td>370 (0.1%)</td>
<td>441364</td>
</tr>
<tr>
<td>8</td>
<td>240562</td>
<td>(99.9%)</td>
<td>227 (0.1%)</td>
<td>240789</td>
</tr>
<tr>
<td>9</td>
<td>88830</td>
<td>(100.0%)</td>
<td>11 (0.0%)</td>
<td>88841</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>2283365 (99.9%) 1591 (0.1%)</td>
</tr>
</tbody>
</table>

Post multi-cut via insertion:

<table>
<thead>
<tr>
<th>#</th>
<th>Metal 1</th>
<th>single-cut</th>
<th>multi-cut</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>274948</td>
<td>(37.4%)</td>
<td>460404 (62.6%)</td>
<td>735352</td>
</tr>
<tr>
<td>19</td>
<td>176205</td>
<td>(22.6%)</td>
<td>602405 (77.4%)</td>
<td>778610</td>
</tr>
<tr>
<td>20</td>
<td>96677</td>
<td>(21.9%)</td>
<td>344687 (78.1%)</td>
<td>441364</td>
</tr>
<tr>
<td>21</td>
<td>43947</td>
<td>(18.3%)</td>
<td>196844 (81.7%)</td>
<td>240791</td>
</tr>
<tr>
<td>22</td>
<td>17151</td>
<td>(19.3%)</td>
<td>71690 (80.7%)</td>
<td>88841</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td>608928 (26.6%) 1676030 (73.4%)</td>
</tr>
</tbody>
</table>
Wire Spreading

Metal particle causing a short
S3 Approach

Wire Spreading:
- Avoids congestion
- Benefits both DFM and SI

S3 Strategy
- Use SOC Encounter SI awareness switches
- Route clock nets, top level nets and sensitive signals on double spacing
Conclusions

- Early in the Design Phase
- Foundry/Designer Collaboration
- Better Solutions for DFM from EDA Vendors
- DFM is a Business Opportunity
 - 5% increase in yield is worth $50M over the life of a cell phone
Visit S3 at Stand #05 or www.s3group.com for more information on our leading edge SoC Design capabilities and silicon proven 90nm Mixed Signal IP