Hybrid Platform Application in Software Debug

Jiao Feng July 15
Software costs in SoC development

Software is fastest growing component of SoC development cost

Impact of Design Technology on SOC
Consumer Portable Implementation Cost

- Hardware Costs
- Software Costs

$ US Millions

2009 2010 2011f 2012f
Early software adoption

Previous Development Process

- **IC Development**
 - RTL Design
 - Physical Design
 - Rev A0 Tape-out & Fab
 - Rev A0 IC Bring-up Validation, Debug
 - RTL Bug-fix & Feature Add
 - All-Layer Rev IC Validation
 - RTL Bug-fix
 - Metal Rev IC Validation
 - Qual Tests
 - IC Mass Production
 - Customer SOC Launch

- **SW Development**
 - Platform SW Development on SOC
 - Customer Validation & Network Integration
 - Ship SoC with poor Quality SW

New Development Process

- **IC Development**
 - RTL Design
 - Physical Design
 - Rev A0 Tape-out & Fab
 - Rev A0 IC Bring-up Validation, Debug
 - RTL Bug-fix
 - Metal Rev IC Validation
 - Qual Tests
 - IC Mass Production

- **SW Development**
 - SW Development on Emulator/FPGA
 - Platform SW Integration on SOC
 - Customer Validation & Network Integration
 - Customer SOC Launch

SW Early Entry

High SW quality and cycle time reduction due to early SW adoption
Challenges for early software adoption

- SW teams have become the long pole in delivering SOC on time and with high quality
 - Exploring Fixed Virtual Platforms for early SW Development
 - Full Virtual Prototypes have a high cost of entry and lack accuracy

- Current Emulation solutions are too slow for the OS Based SW tasks

- Meeting SW teams needs with FPGA Prototypes becoming more difficult
 - Earlier access can only occur with "dirtier" RTL, which is difficult with FPGA compile times and challenging debug
 - Increased design complexity of multi-core/multi-cluster is exceeding the capacity of FPGA systems
Early, High-Performance SW Execution on Palladium

Exclusive solution combines the best characteristics of emulation and virtual platforms

TLM Virtual Platform – VSP
- Up to 100MHz
- Early availability for SW developers
- Advanced SW debug
- Fast SW turnaround time

RTL Emulation – Palladium® XPI/II
- Up to 4MHz
- From early-RTL to full-SoC validation
- Advanced HW debug
- Fast HW turnaround time

Cadence Hybrid Solution
- Boot complex OS at 48MHz
- Speed up SW-driven tests 1-10X over emulation
- Early availability for SW developers
- Advanced HW + SW debug
- Fast HW and SW turnaround time
Improved HW/SW debug capability

VSP Source Code Debugger

IES/Palladium HW Signal Debuggers

VSP HW/SW Memory Access

VSP Smart Message Logging

Interconnected
- Integrated processes
- Coordinated execution
- Unified Control
- Zero-time access to HW mem

Virtual Terminal

Linux Rehs Root
The Palladium/VSP Hybrid Solution

The Palladium/VSP Hybrid addresses the need for fast execution speed, to boot operating systems and execute applications. It does this by replacing the RTL CPU and memory with a virtual model that runs 50 times faster.

Architected for SW Performance
- High-speed virtual platform
- Asynchronous HW/SW Execution with Interrupt driven sync
- High-Speed Multi-Domain Memory Coherency

Designed to integrate HW and SW flows
- Does not require changes to HW or SW stacks
- Virtual connections into SW Engineer’s environments
- Seamless hybrid execution for both HW and SW users
Palladium Hybrid Focus:
Kernel, Drivers, Android, Linux-based tests
Hybrid Components and Insertion

- **Virtual Comps**
 - ARM Fast Model
 - Smart Memory (systemc part)
 - Re-configurable router model, etc.

- **RTL Comps**
 - Rest RTLS (removed cpu core and replaced memory by smart memory model)

- **Bridge Comps**
 - TLM/RTL Bridge
 - Reset and interrupts Manager

- **SWI packages makes it easier to do CPU and memory Hybrid integration**
Hybrid at SPREADTRUM

The following diagram shows all the components in Whale Hybrid environment:

Usage:
- Boot kernel
- Boot OS
- Run real world applications
- Run benchmark
Performance Result

- Linux kernel boot
 - Palladium only = 1 hour
 - Hybrid = 60 secs

- Android
 - Palladium only = Hours*
 - Hybrid = 6 mins
Conclusion

- Enables high-performance execution of SOC SW with RTL and is suitable for bare mental SW, OS, device drivers, test applications on OS.

- Enable co-develop and co-verify pre-silicon HW designs.

- Run Linux kernel boot and android boot near FPGA speed.

- Has advanced debug tools to facilitate SW debug and HW debug.

- High quality SW on silicon arrival and contribute to smoother bring-up

- Cut down time from design to market.
THANK YOU!