Home > Community > Blogs > Low Power > rapid adoption kit rak enables productive mixed signal low power structural verification
Login with a Cadence account.
Not a member yet?
Create a permanent login account to make interactions with Cadence more conveniennt.

Register | Membership benefits
Get email delivery of the Low Power blog (individual posts).


* Required Fields

Recipients email * (separate multiple addresses with commas)

Your name *

Your email *

Message *

Contact Us

* Required Fields
First Name *

Last Name *

Email *

Company / Institution *

Comments: *

New Rapid Adoption Kit (RAK) Enables Productive Mixed-Signal, Low Power Structural Verification

Comments(0)Filed under: low power, mixed-signal, mixed signal, Conformal Low Power, Digital Front-End Design, CPF Macro Modelling, Power Intent Export Assistant, design CPF, Mixed Signal Verification, CLP, Virtuoso Schematic Editor, VSE, Virtuoso, PIEA, mixed-signal low-power, Cadence Online Support, COS, Conformal

All engineers can enhance their mixed-signal low-power structural verification productivity by learning while doing with a PIEA RAK (Power Intent Export Assistant Rapid Adoption Kit). They can verify the mixed-signal chip by a generating macromodel for their analog block automatically, and run it through Conformal Low Power (CLP) to perform a low power structural check.  

The power structure integrity of a mixed-signal, low-power block is verified via Conformal Low Power integrated into the Virtuoso Schematic Editor Power Intent Export Assistant (VSE-PIEA). Here is the flow.


Applying the flow iteratively from lower to higher levels can verify the power structure.

Cadence customers can learn more in a Rapid Adoption Kit (RAK) titled IC 6.1.5 Virtuoso Schematic Editor XL PIEA, Conformal Low Power: Mixed-Signal Low Power Structural Verification.

The RAK includes Rapid Adoption Kit with demo design (instructions are provided on how to setup the user environment). It Introduces the Power Intent Export Assistant (PIEA) feature that has been implemented in the Virtuoso IC615 release.  The power intent extracted is then verified by calling Conformal Low Power (CLP) inside the Virtuoso environment.

  • Last Update: 11/15/2012.
  • Validated with IC 6.1.5 and CLP 11.1

The RAK uses a sample test case to go through PIEA + CLP flow as follows:

  • Setup for PIEA
  • Perform power intent extraction
  • CPF Import: It is recommended to Import macro CPF, as oppose to designing CPF for sub-blocks. If you choose to import design CPF files please make sure the design CPF file has power domain information for all the top level boundary ports
  • Generate macro CPF and design CPF
  • Perform low power verification by running CLP

It is also recommended to go through older RAKs as prerequisites.

  • Conformal Low Power, RTL Compiler and Incisive: Low Power Verification for Beginners
  • Conformal Low Power: CPF Macro Models
  • Conformal Low Power and RTL Compiler: Low Power Verification for Advanced Users

To access all these RAKs, visit our RAK Home Page to access Synthesis, Test and Verification flow

Note: To access above docs, use your Cadence credentials to logon to the Cadence Online Support (COS) web site. Cadence Online Support website http://support.cadence.com/ is your 24/7 partner for getting help and resolving issues related to Cadence software. If you are signed up for e-mail notifications, you can receive new solutions, Application Notes (Technical Papers), Videos, Manuals, and more.

You can send us your feedback by adding a comment below or using the feedback box on Cadence Online Support.

Sumeet Aggarwal


Leave a Comment

E-mail (will not be published)
 I have read and agree to the Terms of use and Community Guidelines.
Community Guidelines
The Cadence Design Communities support Cadence users and technologists interacting to exchange ideas, news, technical information, and best practices to solve problems and get the most from Cadence technology. The community is open to everyone, and to provide the most value, we require participants to follow our Community Guidelines that facilitate a quality exchange of ideas and information. By accessing, contributing, using or downloading any materials from the site, you agree to be bound by the full Community Guidelines.